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Wenhua Road, Shenyang, People's Republic of China 
$ Department of Physics, Xiangtan University, Xiangtan, Hunan, People's Republic of 
China 
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Abstract. The Kohmoto-Kadanoff-Tang renormalisation-group method is extended to deal 
with the electronic properties of a class of one-dimensional quasiperiodic lattices. A unified 
trace map is obtained and it is shown that the energy spectra of the quasiperiodic lattices are 
Cantor-like, that is the spectra are self-similar and the energy gaps in the spectra are densely 
populated. 

There is much current interest in studying the electronic properties of quasiperiodic 
systems and many highly sophisticated techniques have been developed [ 1-10]. The 
most influential technique is the Kohmoto-Kadanoff-Tang (KKT) renormalisation- 
group method [ 1,7,8], which was developed to deal with the electronic properties of a 
one-dimensional (ID) Fibonacci lattice. Recently, the interest in the electronic properties 
has been shifting towards other ID quasiperiodic lattices [ll-141. It was shown [12,13] 
that the numerically calculated wavefunctions of states with energy E = 0 for several 
two-tile quasiperiodic lattices are clearly critical, i.e. self-similar and neither extended 
nor localised in a standard fashion. 

A ID two-tile quasiperiodic lattice is a lattice such that the separation of successive 
lattice points takes avalueA or B and the two tilesA and B are arrangedin a quasiperiodic 
sequence. The most fully investigated ID two-tile quasiperiodic lattice is the Fibonacci 
lattice. The sequence of A tiles and B tiles is the Fibonacci sequence S,, which is 
constructed recursively as 1 with So = {B}  and SI = {A}. A 
straightforward generalisation of the Fibonacci sequence is a class of quasiperiodic 
sequences S,, which are given by the recursion relation SI+ = {Sl , S;l 1} with So = {B}  
and S1 = {A}, in which 1 1, and m and n are positive integers. This class of quasiperiodic 
sequences is here referred to as the generalised Fibonacci sequence and an alternative 
method for constructing them is to use the inflation symmetry (A, B )  + (A"Bm, A ) .  Due 
to the construction rule for SI, the total number Fl of tiles A and B in SI follows the 
recursion relation F,, = mF,- + nF,for 1 3 1 with Fo = F1 = 1. It can easily be checked 
that the ratio of the total number of tiles corresponding to the Zth iterate of A to the total 
number of tiles corresponding to the lth iterate of B is equal to t ,(m, n )  = F I / F I - ,  = 
mt;_',(m, n)  + n. Introducing t ( m ,  n)  = 1iml+,-t,(m, n ) ,  one obtains an equation with 

= {S I ,  SI-1} for 1 
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solution t ( m ,  n)  = +[ (n2 + 4m)li2 + n ] .  In this letter we study the electronic properties 
of a class of two-tile quasiperiodic lattices, namely the generalised Fibonacci lattices, in 
a unified way. The two types of tile A and B are arranged successively following the 
generalised Fibonacci sequences. 

To deal with the electronic properties of ID generalised Fibonacci lattices, we use 
the ID version of an almost-periodic (discrete) Schrodinger equation 

where V,  represents a single potential level at site n and takes two values V,  and V,, 
which are arranged in a generalised Fibonacci sequence. In matrix form (1) can be 
written as 

* n +  1 = M(n)"n (2) 
where the wavefunction W, is a column vector (V,, V,,-J and the transfer matrix M(n) 
is a 2 x 2 unimodular matrix 

M(n) = (k - " -I). 
0 

The wavefunction at an arbitrary site N is represented by 

W N + l  = M(WWl 

(3) 

(4) 
where 

M(N = M(N)M(N - 1).  . . M(2)M(1) ( 5 )  

represents successive multiplications of the transfer matrices. 
If N is a generalised Fibonacci number F,, it follows from the recursion relation 

Si+1 = {ST, Sy!l} that the transfer matrix MI = M(F/) satisfies the following recursion 
relation 

M/+1 = My-"_,? l a 1  (6) 
with MO = M(B) and M1 = M(A). Since det MO = det M, = 1, it follows from (6) that 
Mi is unimodular, i.e. det MI = 1. Thus the 2 X 2 real matrix MI can be parametrised 
only by three real numbers. Since the matrix map (6) transforms (Ml-,, Mi) to 
(M,, MI+ J, it can be regarded as a 6~ dynamical system. In the following we reduce this 
map to a trace map. 

From theory of matrices the Nth power of a 2 X 2 unimodular matrix M, is given by 
~ 5 1  

where 

and QN(xI)  is the Nth Chebyshev polynomial of the second kind 

= sin[(N + 1) COS-~(X,)]/(I - x: ) l / ' .  
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The Chebyshev polynomial satisfies the recursion relation 

%&I)  = & I Q N - l ( X I )  - Q N - Z ( X I )  N 3 1  (10) 

with W 1 ( x 1 )  = 0 and Qo(xI) = 1. Using the recursion relation (10) one can verify the 
result in (7) by mathematical induction. 

From (6) and (7) we obtain 

x l + l  = l T r M r + l  =iTr(MT_,M;) 

= Q n -  1 ( x l ) Q m -  l(x1- 1 )g/+ 1 - Q n -  1 ( x l ) Q m - 2 ( x l -  1)xl 

- Q n - 2 (x I )Q m - 1 ( X I  - 1 1x1 - 1 - Q n - 2 ( X I  1% m - 2 ( X I  - 1 1 (11) 

where gl+,  = ~ ( U , U ~ - ~  + blcI - ,  + c I b I T l  + d Id / - l ) .  From (6) it follows that 
( M T ? ~ ) ~  = M;-,M;'. By taking the trace of this equation we have 

Q m - 1 ( ~ 1 - 2 ) ~ 1 - 2  - Q m - 2 ( ~ 1 - 2 )  = Qn-l(xl-l)hl+1 - Q ~ - z ( x I - ~ ) x I  (12) 

wherehl+l = l(dIaI-l - bIcl-1 - c ~ b l - ,  + uldl-1). 

generalised Fibonacci lattices 
Since gI+ + h,+ = x l x I -  1, we then obtain from (11) and (12) the trace map for the 

with the initial conditions 

and 

and when m = n = 1 in particular, the map in (13) becomes the well known KKT trace 
map for the Fibonacci lattice [l, 7, S] 

X[+1 = 2X[X1-1 - X I - 2  1 3 2 .  (16) 
The trace map in (13) is a reduced dynamical system which corresponds to a projection 
of the full 6~ dynamical map to a 3D orbit. Merely by studying it one can determine the 
energy spectra of the generalised Fibonacci lattices. 
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Figure 1. Band structures of the periodic systems 
of periods F, = F,-2 + Fi-I with Fo = F, = 1, and 
1 = 2,3,4,5 and 6. The two types of site potentials 
are chosen to be V ,  = -V, = -0.6. The energy 
spectrum of the quasiperiodic lattice is obtained 
by taking the limit I+ CO. 
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Figure 3. As figure 1, but for F/ = F / - 2  + 3F,-, 
with 1 = 2 and 3. 
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Figure 2. As figure 1, but for F, = F,-* + 2F,-, 
with I = 2 ,3  and 4. 
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Figure 4. As figure 1, but for F! = 2F,- ,  + 2F,-, 
with 1 = 2,3,4 and 5. 
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Figure 6. As figure 1, but for F/ = 3F,-, + F,-, 
with I = 2 , 3  and 4.  

Figure 5. As figure 1 ,  but for Fi = 2 F , _ ,  + 2Fi - ,  
with I = 2 and 3. 

Assuming the eigenvalue of M(m is A ,  i.e. WN+l = M ( W 1  = Awl, one has 

A = B{Tr M(m 2 [(Tr M(w)2 - 4 det M("]1/2}. (17) 
When the periodic (+) or antiperiodic (-) condition WN+l = ?Wl is applied, then 
il = 2 1, and it follows from (17) that the allowed energies are determined by 

1Tr  M(w = +1(1 + det M(w) = +1. (18) 

x ,  = r1. (19) 

Let N be a generalised Fibonacci number F,; equation (18) then becomes 

It is commonly required that the wavefunctions of a periodic system with a period of F/ 
should not diverge, thus the conditions for bands and gaps in the energy spectrum are 
respectively 

bands: lx,l 1 (20a) 

gaps: IX/  I ' 1. 
The quasiperiodic system is obtained by taking the limit 1 4  w, so the spectrum is 
obtained from the conditions in (20) in the limit of I + m. 

As typical examples, band structures obtained by the generalised KKT renor- 
malisation-group method are shown in figures 1-6 for the periodic systems with periods 
FI=mFl-2+nFI-1for1~2withFo=Fl=1,inwhich(m,n)= (1 ,1) , (1 ,2) , (1 ,3) ,  
(2, l), (2,2) and (3, l ) ,  respectively. The two types of site potentials are chosen to be 
V,  = - V ,  = -0.6. These figuresalready exhibit theexoticfeaturesofthe energyspectra 
for the generalised Fibonacci lattices. One can see that each spectrum consists of F/ 
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bands and Fl - 1 gaps at Ith iteration. As the index I gets larger, more gaps appear. In 
the limit of 1 - 4  a, it can be concluded that the gaps are densely populated in the energy 
spectra of the generalised Fibonacci lattices. Another feature is that the energy spectra 
of the generalised Fibonacci lattices are self-similar. The self-similarities of the energy 
spectra are clearly shown in figures 1, 2,  4 and 6,  respectively. As more iterations 
corresponding to larger indices I are considered, the energy spectra corresponding to 
figures 3 and 5 can be also shown to be self-similar. The self-similarities and the dense 
distributions of the energy gaps mean that the energy spectra of the generalised Fibonacci 
lattices are Cantor-like. 

In conclusion, electronic properties of a class of ID quasiperiodic systems (generalised 
Fibonacci lattices) are studied by the generalised KKT renormalisation-group method. 
A unified trace map is obtained, which is a reduced dynamical system corresponding to 
a projection of the full 6~ dynamical map to a 3D orbit. Merely by studying this trace map 
one can determine the energy spectra of the generalised Fibonacci lattices. It is shown 
that the energy spectra of the generalised Fibonacci lattices are Cantor-like, i.e. the 
spectra are self-similar and the energy gaps are densely distributed in the spectra. 
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